عنوان مقاله ترجمه شده:شناسایی مزاحمت داخلی و حفاظت سیستم با استفاده از داده کاوی و روش های کالبد سنجی
عنوان انگلیسی مقاله ترجمه شده:An Internal Intrusion Detection and Protection System by Using Data Mining and Forensic Techniques
سال انتشار مقالهنام ژورنالتعداد صفحات مقاله ترجمه شده
2015IEEE SYSTEMS JOURNAL12
چکیده فارسی:امروزه اکثر سیستم های کامپیوتری از ID و رمز عبور کاربران به عنوان الگوهای دخول به سیستم استفاده می کنند تا کاربران را تصدیق نمایند. بهرحال، برخی از افراد الگوهای دخول به سیستمشان را با همکارانشان به اشتراک می گذارند و از این همکاران درخواست کمک در کارها را دارند، لذا این الگو را تبدیل به یکی از ضعیف ترین نقاط امنیت کامپیوتر می نماید. مهاجمان داخلی، کاربران معتبر یک سیستم هستندکه از داخل به سیستم حمله می کنند و چون اکثر سیستم های شناسایی تهاجم، شناسایی دیوارهای آتش و جداسازی رفتارهای مخرب تنها از خارج دنیای سیستم اجرا شده اند، شناسایی این مهاجمان داخلی سخت می باشد. علاوه بر این، برخی از مطالعات مدعی هستند که تحلیل تماس های سیستم (SCs) که با دستور تولید شده اندف می تواند این دستورات را شناسایی کند تا بوسیله ی آن حمله ها را دقیقا مشخص نماید. لازم به ذکر است که الگوهای حمله، ویژگی های یک حمله هستند. بنابراین، در این مقاله، یک سیستم امنیت، با نام شناسایی تهاجم داخلی و سیستم حفاظت (IIDPS) ارائه شده است تا عادات استفاده ی کاربران را به عنوان ویژگی های کالبد سنجی آنها رهگیری کند و بوسیله ی مقایسه ی رفتارهای مصرف کاربر با الگوهای جمع شده در پروفایل شخصیِ نگه دارنده ی حساب، مشخص نماید که نگه دارنده ی حساب یک کاربرِ معتبر وارد شده به سیستم است یا نه. نتایج تجربی نشان می دهد که دقت شناسایی کاربر IIDPS برابر با 94.29% است، در حالیکه زمان پاسخ کمتر از 0.45s است. این مسئله نشان می دهد که IIDPS می تواند یک سیستم محافظت شده را به طور موثر و کارآمد از حمله های خودی محافظت نماید.
چکیده انگلیسی:Currently, most computer systems use user IDs and passwords as the login patterns to authenticate users. However, many people share their login patterns with coworkers and request these coworkers to assist co-tasks, thereby making the pattern as one of the weakest points of computer security. Insider attackers, the valid users of a system who attack the system internally, are hard to detect since most intrusion detection systems and firewalls identify and isolate malicious behaviors launched from the outside world of the system only. In addition, some studies claimed that analyzing system calls (SCs) generated by commands can identify these commands, with which to accurately detect attacks, and attack patterns are the features of an attack. Therefore, in this paper, a security system, named the Internal Intrusion Detection and Protection System (IIDPS), is proposed to detect insider attacks at SC level by using data mining and forensic techniques. The IIDPS creates users’ personal profiles to keep track of users’ usage habits as their forensic features and determines whether a valid login user is the account holder or not by comparing his/her current computer usage behaviors with the patterns collected in the account holder’s personal profile. The experimental results demonstrate that the IIDPS’s user identification accuracy is 94.29%, whereas the response time is less than 0.45 s, implying that it can prevent a protected system from insider attacks effectively and efficiently
کلمات کلیدی مقاله: , , , ,
دانلود اصل مقاله ترجمه نشده افزودن به سبد خرید